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Different discontinuous weak solutions may be obtained for shallow water 5ow 
over an obstacle from the same initial conditions depending upon the form in which 
the governing system of nonlinear hyperbolic differential equations are written. Wz 
exhibit two such different solutions obtained analytically from two different forms of 
the system of equations. We show that a Lax-WendroR type finite difference scheme 
yields accurate approximations to these discontinuous solutions when it is applied :o 
the corresponding system of equations. 

The motion of an incompressible, homogeneorar, inviscid, and hydrostatic &lid 
is governed by a system of“shallow water” equations. We consider one-dimensional 
“shallow water” flow over an isolated obstacle as shown in Fig. 1. The equations 
may be written as in [7] 

where x and r denote the space and time coordinates; II and p denote Ehe horizontai 
velocity and the depth of the fluid; and H is the height of an obstacle abo-tie she 
flat lower boundary. The parameter g denotes the vertical acceleration due :o 
gravity. 

The number of equations in the system is equal to the number of unknowns. We 
might expect that appropriate initial and boundary conditions would lead to unique 
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FIG. 1. A cross section view of shallou~ water flow over an o bstacle. 

solutions without recourse to any further physical principles. This expectation, 
however, is achieved only for the regime of continuous motion, When Eqs. (1.1) 
and (1.2) are solved for a given initial condition, hydraulic jumps may appear [3]. 
One purpose of this paper is to illustrate the fact, pointed out by Lax [4], that the 
“solutions” of such a problem containing shock (or jump) discontinuities are in 
general not unique. More precisely, Lax showed that discontinuous solutions which 
arise as weak solutions of a given system of equations are determined by the form 
in which the equations are written. 

A second purpose of this paper is to illustrate concretely the fact (known to 
many [l]) that a Lax-Wendroff type finite difference scheme will furnish unique 
accurate approximations to the corresponding unique discontinuous weak solu- 
tions. Hence, one may have confidence that a finite difference scheme will adequately 
describe a discontinuous physical flow for the form in which the differential equa- 
tions are written. 

II. SHOCK CONDITIONS 

Let us rewrite the system of equations (1.1) and (1.2) in the velocity form 

U,+F,fE=O (2.1) 
where 

and the subscripts x and t denote differentiation. 
By mathematical definition, U is called a ~veak sohrtion of Eq. (2.1) if the integral 

relation 

IS {W,U$- W,F- WB)dxdr = 0 (2.3) 

holds for every test vector W = FV(X, t) which has continuous first derivatives and 
which vanishes outside of some bounded region. Eq. (2.3) is obtained formally by 



multiplying (2.1) by W and applying integration by parts. A weak solution with 
continuous first derivatives is called a genuine solution [4]. 

Weak solutions need not be differentiable. If U, and U, are two genuine solutions 
of (2.1) whose domains in the x, t plane are separated by a smooth curve 9, the 
two taken together will constitute a weak solution if and oniy if the slope r = &,i& 
of the separating curve and the value of Cr, and U;, along the curve satisfy the condh- 

lions 

; (U, - FL:) = F(U2) - F(U,), g4j 

valid for each component of the vectors Ui and Fj . (See [4] and also [Z], p. 149.) 
In fact, by integration by parts applied to (2.3) we find 

for every test function W, whence (2.4) follows. The inverse of T, denoted by 

is called the propagation velocity of the discontinuity 

Shock Conditions in Velocity Form. 

Applying (2.4) and (2.5) to (2.L), the following shock conditions are derived: 

Upon eliminating if2 from (2.4): we get from (2.7) 

The proper choice of sign preceding the radical of (2.8) must be determined. 
Condition (2.7) can be derived independently from the requirement for the 

conservation of mass through the discontinuity and so there is no question about 
this being correct physically. Condition (2.8) on the other hand, is slightly different 
from the usual condition for hydraulic jumps which are discussed, for example. by 
Rouse [6] and Stoker [7]. 

In order to derive, based on the theory of weak solutions, the same disconrinuit~ 
conditions as described in [6] and [7], we must first rewrite the system of eauations 
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(I. 1) and (1.2) by using as the dependent variables momentum and mass instead of 
velocity and mass. Let us define the momentum by 

112 = lq. (2.9) 

Multiplying (1.1) and (1.2) by F and U, respectively, and adding the two resulting 
equations, it follows that 

The system of equations (2.10) and (1.2) can be put into the following momentum 
form 

v, + G, + K = 0, (2.11) 

where 

Shock Conditions in Momentum Form. 

If we replace F by G and U by V in (2.4), the following shock conditions are 
derived [after using (2.9)] in terms of the original dependent variables u and v: 

(2.13) 

c= "2V2 - u193 . (2.14) 
9)2 - TJl 

By using (2.14),.which is identical to (2.7), to eliminate uq from (2.13), we obtain 

c = u1 & [g? ( q2 ; yl’: 

Again, the proper choice of sign preceding the radical of (2.15) remains to be made. 
Condition (2.15), which is different from (2.Q is well known and has been inde- 

pendently derived from physical considerations (e.g. see [7]). In order to see the 
effect of using condition (2.8) or (2.15), let us consider a simple jump situation 
having on one side a depth ~~ and a velocity y and on the other a depth y2 and a 
velocity zlf , as shown in Fig. 2. For prescribed values of u1 , Y)~ , and p2 , the propa- 
gation speed C and velocity uz can be determined by solving the system (2.7) and 
(2.8) or the system (2.14) and (2.15). We choose the plus sign both in (2.8) and (2.15). 



I $ ui 
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FIG. 2, Simple jump configuration used to compare shock conditions. 

a. Jump conditions in velocity form 

212 = 211 + (I. - 1) (&-J2(gpp2~ 

where 
r = @/yr. . 

, I / 
- MOMENTUM FORM 

------ VELOCITY FORM 

FIG. 3. Dimensionless flow velocity u,/(g& lip and jump velocity C/(gq+)“’ for the jimpie 
jump configuraiiion shown in Fig. _. 7 Momentum form results are denoted by solid lines asd 
velocity form results are denoted by dashed lines. 
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b. Jump conditions in momentum form 

u, = 24, + (r - 1) (*)l’Z(g&l/$ 

c = u1 + r (~)lp(grpl)‘lL. 
(2.18) 

Fig. 3 shows a comparison of cases a and b in which u1 = 0. The abscissa denotes 
&yl, and the ordinate denotes the dimensionless values of C/(gq#iz and 
uZ/(gp)#/“. The solid and dashed lines represent the momentum form (2.18) and 
velocity form (2.16), respectively. The difference in the values of C and l/Z generated 
by the two shock conditions, a and b, increases with the ratio ~,/y, . 

III. NUMERICAL SOLUTIONS 

The foregoing simple example clearly shows that the formulation of (weak 
solution) jump conditions associated with a given system of equations depends on 
the form in which the equations are written. Now the question arises whether these 
solutions containing jumps can be found when the same physical problem is solved 
by applying a finite difference scheme to the different forms of the equations but 
with the same initial conditions. In order to investigate this question in a fairly 
complex situation, let us consider the following physical problem related to Fig. 1. 

For t < 0 and -m < x < co, the fluid is completely at rest, and the height of 
the free surface, denoted by k, , is constant. The fluid is impulsively set in motion at 
t = 0 so that for -co < x < 03 the fluid has a constant horizontal velocity u,, . 
The problem is then to determine the subsequent motion of the fluid. This problem 
was treated both analytically and numerically with the use of the momentum form 
[i.e., Eqs. (2.1 l)] by Houghton and Kasahara [3]. 

In this section, we treat the same physical problem numerically, but use the 
velocity form [i.e.. Eqs. (2. I)]. We then compare the two solutions based on identical 
initial and boundary conditions and space and time increments. We used a nume- 
rical scheme developed by Lax and Wendroff [5] and refer to [3] for a detailed 
description of the computational procedure. We shall present only results here. 
Note that we use the initial condition uO/(glz,,)‘l” = 0.7. The ratio of the height of 
the obstacle crest to the initial depth He/ho was set at 0.5. A total of 2000 spatial 
grid points are used in the computations. 

Fig. 4a shows the numerical solutions of velocity and the height of the free 
surface after 400 time steps where the velocity form of equations (2.1) has been used. 
The symbol V in the upper right corner stands for the velocity form. Fig. 4b is the 
same as Fig. 4a except that the momentum form (2.11) was used. The symbol M in 
the upper right corner stands for the momentum form. If we compare Fig. 4a with 



FIG. 4a Numerical solution for the velocity form eqtiations after 400 time steps 
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FE. Ib, Same as Fig. 4a but for the momentum form equations. 
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FIG. 5a. Same as Fig. 4a but after 1000 time steps. 

nc ,’ 

FIG. 5b. Same as Fig. 4b but after 1000 time steps. 



Fig. 4b, we note marked differences in the positions of the downstream jump. This 
difference in position of the downstream jump becomes more pronounced afrer 
1000 time steps. as shown in Figs. 5a and 5b. 

IV. ANALYTICAL SOLUTIONS 

A.s seen from Figs. 4 and 5, the structure of the flow in the neighborhood of the 
obstacle is independent of time. Houghton and Kasahara [3] have shown that after 
sufficient time has elapsed, the solution in the neighborhood of the obstacle can bs 
determined by analyzing the steady-state solutions of the relevant equations by 
taking into account proper jump conditions. In the analyticai solutions the discos 
tinuity is regarded as an interior boundary. Jump conditions are applied to plzc; 
together analytic steady state solutions for the purpose of obtaining the asymptotic 
structure of the flow over an isolated obstacle. But, In the numerical scheme. 1~3 
special effort is needed to compute the jump: it appears naturally in the numeric.G 
values of the solution. (See [8] where schemes that have this property are deri~:rd 
from physical considerations.) 

The asymptotic solution for the initial depth h, ? the initial velocity liil 1 ;:7d .r 
smooth obstacle with a crest height of 17, can be determined by solving the foliow~ng 
ten algebraic equations for the ten variables shown in Fig. 6. For the momei:tu:= 
form the ten equations are (see 131): 

a. Jump conditions on the upstream side of rhe obstacle 

Frc. 6. Asymptotic conditions in the vicinity of the obstacle. I Cii and k, arz initial conditions. 
For given -ZC I the other ten variables are unknowns determinable by the ten algebraic equaticx 
in Section 4. 
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Equation (4.1) comes from (2.14), and Eq. (4.2) (with a minus sign preceding the 
radical) comes from (2.15). 

b. Steady flow over the obstacle 

g + qlc + Hc = 5 + hA ) (4.3) 

ueye = LlJl~ ) (4.4) 

g + hB = g + llA ) (4.5) 

l&B = U;ihA . (4.6) 

c. Critical condition at the crest of the obstacle 

If, = (gcpp. 

d. Jump conditions on the downstream side of the obstacle 

(4.7) 

(4.9) 

e. Rarefaction condition downstream of the obstacle 

u, - Z(gh,)li” = u,, - 2(gh,)l/‘. (4.10) 

The ten equations are the same for the velocity form except that the two jump 
conditions, (4.2) and (4.9), are replaced, respectively, by 

and 

Cl = u, - (28 (h 
a 

‘$2,1B, )? (4.12) 

(4.11) 

Equations (4.11) and (4.12) are based on (2.8) with the sign preceding the radical 
taken as minus. These two sets of ten equations were solved by the method described 
in the Appendix. As in the numerical computations, we set z~o/(glzO)l~ = 0.7 and 
He/ho = 0.5. The results of analytical solutions are compared with those of nume- 
rical solutions in Table I. Values taken from the numerical computations are shown 
only to the number of significant digits that can be determined from the solutions. 
Note the good agreement between the numerical and analytical solutions for both 
the velocity and momentum forms of the equations. 
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COMPARISONOF ANALYTICAL AND NUPTIAL RESUI.TS 

Asymptotic 
Quantity 

Velocity Form Equations 
Analytical Computed 

Value Value 

Momentum Form Equations 
Analytical COlTIpLIied 

Value Value 

1.3710 1.3709 1.3677 i .3676 
0.3593 0.3593 0.3579 0.3580 

-0.5592 -0.555 --OS724 -0.569 
0.6237 0.6236 0.6211 0.621 i 
0.7897 0.7897 0.7881 U.7883 
0.3315 0.3314 0.3298 0.3298 
1.4860 1.4860 1.4846 1.4846 
0.2737 0.28 0.1542 0.15 
0.9827 0.9826 0.9281 0.928 
0.6826 0.6825 0.6268 0.628 

V. C~NCLU~I~N~ 

The excellent agreement between the analytical and numericai solutions FE 
both the velocity form and the momentum form of the eqrrations clearly indicates 
that the nonuniqueness of weak solutions has been illustrated in the numerica?i 
solutions of the Lax-Wendroff finite difference eqnations as well as in the analylicei 
solutions of the differential equations. 

The conclusions made here also apply to the more general problem of hydrtp- 
dynamic shocks in the flow of a compressible fluid where it is customary to use the 
system consisting of conservation of mass. momentum. and energy (see, For 
example, [I]). The Rankine-Hugoniot shock conditions can be derived for this 
system if Lax’s theory of weak solutions is applied. However. as noted by Coma& 
([2], pi 4901, different shock solutions will be obtained for the same physical 
problem bjr using the systems of equations for conservation of mass, mcmenIum., 
and entropy. 

APPENDIX-SOLUTIONOF THE TEN ALGEBRAIC EQLJKHCNS 
FOR ASYMPTOTIC CONDIiIONS 

Since Houghton and Kasahara [3] have not discussed how to solve the ten 
algebraic equations to determine the asymptotic structure of the ROW over the 
obstacle. we explain here a method of solution. 
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Equations (4.1) and (4.2) were combined to eliminate C2 and written such that 
for a given value of 11, , LI~ is a function of hA and uA . Also (4.4) and (4.7) were used 
to eliminate u, and ye from (4.3). The result is an expression for K, as a function 
of h, and llA . Thus, we have two equations for u0 and H, as functions of hA and uA _ 
Note that u,, increases monotonically with increasing II, and uA, whereas Hc 
increases monotonically with increasing /I, but decreasing uA . Therefore, a simple 
iteration procedure can be used to find the values of 11.~ and uR . With the obtained 
values of 14~ and 11, , Cr , ye , and u, can be computed using (4.1), (4.4), and (4.7). 

Elimination of l/B between (4.5) and (4.6) gives a cubic equation of hg for known 
values of LIP and 12, . This cubic equation can be reduced to a quadratic equation 
by assuming that 11~ + hA since the symmetrical condition is not acceptable. By 
solving the quadratic equation, we find 

11~ = 2 [UA + (uA2 + 8ghA)1,‘2]. 

The solution of z(B can then be found from (4.6) if h, is known. 
Finally, Eqs. (4.8)-(4.10) are solved as follows. First ~1, is eliminated from (4.8) 

using (4.10). Let us call the resulting equation (A). We then start with a small 
initial guess for h, and gradually increase the value of h, until Eqs. (A) and (4.9) 
yield sufficiently close values for C,. . Using this solution of h, , the solution of ZI, 
can be obtained from (4.10). 

The other set of ten equations for the velocity form can be solved similarly. 
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